Матрицы и массивы NumPy в Python

Матрица — это двухмерная структура данных, в которой числа расположены в виде строк и столбцов. Например:

Эта матрица является матрицей три на четыре, потому что она состоит из 3 строк и 4 столбцов.

Матрицы Python

Python не имеет встроенного типа данных для матриц. Но можно рассматривать список как матрицу. Например:

A = [[1, 4, 5], 
    [-5, 8, 9]]

Этот список является матрицей на 2 строки и 3 столбца.

 

Обязательно ознакомьтесь с документацией по спискам Python, прежде чем продолжить читать эту статью.

Давайте посмотрим, как работать с вложенным списком.

A = [[1, 4, 5, 12], 
    [-5, 8, 9, 0],
    [-6, 7, 11, 19]]

print("A =", A) 
print("A[1] =", A[1])      # вторая строка
print("A[1][2] =", A[1][2])   # третий элемент второй строки
print("A[0][-1] =", A[0][-1])   # последний элемент первой строки

column = [];        # пустой список
for row in A:
  column.append(row[2])   

print("3rd column =", column)

Когда мы запустим эту программу, результат будет следующий:

A = [[1, 4, 5, 12], [-5, 8, 9, 0], [-6, 7, 11, 19]]
A [1] = [-5, 8, 9, 0]
A [1] [2] = 9
A [0] [- 1] = 12
3-й столбец = [5, 9, 11]

Использование вложенных списков в качестве матрицы подходит для простых вычислительных задач. Но в Python есть более эффективный способ работы с матрицами – NumPy .

NumPy массивы

NumPy — это расширение для научных вычислений, которое поддерживает мощный объект N-мерного массива. Прежде чем использовать NumPy, необходимо установить его. Для получения дополнительной информации,

  • Ознакомьтесь: Как установить NumPy?
  • Если вы работаете в Windows, скачайте и установите дистрибутив anaconda Python. Он поставляется вместе с NumPy и другими расширениями.

После установки NumPy можно импортировать и использовать его.

NumPy предоставляет собой многомерный массив чисел (который на самом деле является объектом). Давайте рассмотрим приведенный ниже пример:

import numpy as np
a = np.array([1, 2, 3])
print(a)               # Вывод: [1, 2, 3]
print(type(a))         # Вывод: <class 'numpy.ndarray'>

Как видите, класс массива NumPy называется ndarray.

Как создать массив NumPy?

Существует несколько способов создания массивов NumPy.

Массив целых чисел, чисел с плавающей точкой и составных чисел

import numpy as np

A = np.array([[1, 2, 3], [3, 4, 5]])
print(A)

A = np.array([[1.1, 2, 3], [3, 4, 5]]) # Массив чисел с плавающей запятой
print(A)

A = np.array([[1, 2, 3], [3, 4, 5]], dtype = complex) # Массив составных чисел
print(A)

Когда вы запустите эту программу, результат будет следующий:

[[1 2 3]
 [3 4 5]]

[[1.1 2. 3.]
 [3. 4. 5.]]

[[1. + 0.j 2. + 0.j 3. + 0.j]
 [3. + 0.j 4. + 0.j 5. + 0.j]]

Массив нулей и единиц

import numpy as np

zeors_array = np.zeros( (2, 3) )
print(zeors_array)

'''
 Вывод:
 [[0. 0. 0.]
  [0. 0. 0.]]
'''

ones_array = np.ones( (1, 5), dtype=np.int32 ) // указание dtype
print(ones_array)      # Вывод: [[1 1 1 1 1]]

Здесь мы указали dtype — 32 бита (4 байта). Следовательно, этот массив может принимать значения от -2-31  до  2-31-1.

 Использование arange() и shape()

import numpy as np

A = np.arange(4)
print('A =', A)

B = np.arange(12).reshape(2, 6)
print('B =', B)

''' 
Вывод:
A = [0 1 2 3]
B = [[ 0  1  2  3  4  5]
 [ 6  7  8  9 10 11]]
'''

Узнайте больше о других способах создания массива NumPy .

Операции с матрицами

Выше мы привели пример сложение, умножение матриц и транспонирование матрицы. Мы использовали вложенные списки, прежде чем создавать эти программы. Рассмотрим, как выполнить ту же задачу, используя массив NumPy.

 

Сложение двух матриц

Мы используем оператор  +, чтобы сложить соответствующие элементы двух матриц NumPy.

import numpy as np

A = np.array([[2, 4], [5, -6]])
B = np.array([[9, -3], [3, 6]])
C = A + B      # сложение соответствующих элементов
print(C)

''' 
Вывод:
[[11  1]
 [ 8  0]]
 '''

Умножение двух матриц

Чтобы умножить две матрицы, мы используем метод dot(). Узнайте больше о том, как работает numpy.dot .

Примечание: * используется для умножения массива (умножения соответствующих элементов двух массивов), а не умножения матрицы.

import numpy as np

A = np.array([[3, 6, 7], [5, -3, 0]])
B = np.array([[1, 1], [2, 1], [3, -3]])
C = a.dot(B)
print(C)

''' 
Вывод:
[[ 36 -12]
 [ -1   2]]
'''

Транспонирование матрицы

Мы используем numpy.transpose для вычисления транспонирования матрицы.

import numpy as np

A = np.array([[1, 1], [2, 1], [3, -3]])
print(A.transpose())

''' 
Вывод:
[[ 1  2  3]
 [ 1  1 -3]]
'''

Как видите, NumPy значительно упростил нашу задачу.

Доступ к элементам матрицы, строкам и столбцам

Доступ к элементам матрицы

Также можно получить доступ к элементам матрицы, используя индекс. Начнем с одномерного массива NumPy.

import numpy as np
A = np.array([2, 4, 6, 8, 10])

print("A[0] =", A[0])     # Первый элемент     
print("A[2] =", A[2])     # Третий элемент     
print("A[-1] =", A[-1])   # Последний элемент     

Когда вы запустите эту программу, результат будет следующий:

A [0] = 2
A [2] = 6
A [-1] = 10

Теперь выясним, как получить доступ к элементам двухмерного массива (который в основном представляет собой матрицу).

import numpy as np

A = np.array([[1, 4, 5, 12],
    [-5, 8, 9, 0],
    [-6, 7, 11, 19]])

#  Первый элемент первой строки
print("A[0][0] =", A[0][0])  

# Третий элемент второй строки
print("A[1][2] =", A[1][2])

# Последний элемент последней строки
print("A[-1][-1] =", A[-1][-1])     

Когда мы запустим эту программу, результат будет следующий:

A [0] [0] = 1
A [1] [2] = 9
A [-1] [- 1] = 19

Доступ к строкам матрицы

import numpy as np

A = np.array([[1, 4, 5, 12], 
    [-5, 8, 9, 0],
    [-6, 7, 11, 19]])

print("A[0] =", A[0]) # Первая строка
print("A[2] =", A[2]) # Третья строка
print("A[-1] =", A[-1]) # Последняя строка (третья строка в данном случае)

Когда мы запустим эту программу, результат будет следующий:

A [0] = [1, 4, 5, 12]
A [2] = [-6, 7, 11, 19]
A [-1] = [-6, 7, 11, 19]

Доступ к столбцам матрицы

import numpy as np

A = np.array([[1, 4, 5, 12], 
    [-5, 8, 9, 0],
    [-6, 7, 11, 19]])

print("A[:,0] =",A[:,0]) # Первый столбец
print("A[:,3] =", A[:,3]) # Четвертый столбец
print("A[:,-1] =", A[:,-1]) # Последний столбец (четвертый столбец в данном случае)

Когда мы запустим эту программу, результат будет следующий:

A [:, 0] = [1 -5 -6]
A [:, 3] = [12 0 19]
A [:, - 1] = [12 0 19]

Если вы не знаете, как работает приведенный выше код, прочтите раздел «Разделение матрицы».

Разделение матрицы

Разделение одномерного массива NumPy аналогично разделению списка. Рассмотрим пример:

import numpy as np
letters = np.array([1, 3, 5, 7, 9, 7, 5])

# с 3-го по 5-ый элементы
print(letters[2:5])        # Вывод: [5, 7, 9]

# с 1-го по 4-ый элементы
print(letters[:-5])        # Вывод: [1, 3]   

# с 6-го до последнего элемента
print(letters[5:])         # Вывод:[7, 5]

# с 1-го до последнего элемента
print(letters[:])          # Вывод:[1, 3, 5, 7, 9, 7, 5]

# список в обратном порядке
print(letters[::-1])          # Вывод:[5, 7, 9, 7, 5, 3, 1]

Теперь посмотрим, как разделить матрицу.

import numpy as np

A = np.array([[1, 4, 5, 12, 14], 
    [-5, 8, 9, 0, 17],
    [-6, 7, 11, 19, 21]])

print(A[:2, :4])  # две строки, четыре столбца

''' Вывод:
[[ 1  4  5 12]
 [-5  8  9  0]]
'''


print(A[:1,])  # первая строка, все столбцы

''' Вывод:
[[ 1  4  5 12 14]]
'''

print(A[:,2])  # все строки, второй столбец

''' Вывод:
[ 5  9 11]
'''

print(A[:, 2:5])  # все строки, с третьего по пятый столбец
''' Вывод:
[[ 5 12 14]
 [ 9  0 17]
 [11 19 21]]
'''

Использование NumPy вместо вложенных списков значительно упрощает работу с матрицами. Мы рекомендуем детально изучить пакет NumPy, если вы планируете использовать Python для анализа данных.

 

Перевод статьи «Python Matrices and NumPy Arrays»  был подготовлен дружной командой проекта Сайтостроение от А до Я